
Use of Null Vectors (Corrector Ironing) 
 

When there are more correctors than BPMS a multiplicity of solutions is possible. The 

response matrix R now has dimensionality m < n (more columns than rows). For 

simplicity, assume R has rank m. Since (rank of the column space) = (rank of the row 

space), the additional n - m column vectors do not extend the dimensionality.  The 

singular value decomposition looks like: 
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The corresponding sets of orbit- and corrector-eigenvectors have been partitioned into 

particular eigenvectors and null eigenvectors. Application of a linear combination of 

particular corrector-eigenvectors is observable at the BPMS. Application of a null 

corrector-eigenvector is not observable at the BPMS (hence the zero singular value). In 

terms of linear algebra, the particular corrector-eigenvectors span the row space of R 

while the remaining vectors span the complementary null space of R. 

  

Typically, the total corrector pattern in a storage ring may contain both particular 

eigenvector and null eigenvector components: 
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The null vector components are sometimes called 'fighting' correctors and can be reduced 

or eliminated. The orbit distortion caused by the correctors is 
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In practice, we can replace the complete corrector set n
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reduced set 
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This procedure is often referred to as 'corrector ironing' [Ziemann].  

 

To isolate to scalar coefficients ai, use SVD matrix mechanics as before: 
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      (multiply x, expand W) 
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In physical terms, the measured orbit is projected into the non-null eigenvectors (row-

space) and scaled by the corresponding singular value to find the coefficients ai. These 

coefficients are used to generate the corrector vector p

i

ip i
va . The new corrector set 

contains no null-vector components.  

 

An example of where this technique was used on SPEAR is the case where the position 

of 10 photon beams positions were held constant while the strength of approximately 30 

corrector magnets were reduced (10 constraints, 30 variables).  

 

Note - to see that the solution p is the minimum-square corrector strength set, compute 

the modulus of the corrector vector: 
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Since the n component is rejected, the expression is minimized. 

 

 

 

 


